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Abstract. After reviewing the standard uncertainty relations due to Heisenberg, Robertson, 
and Schrodinger, as well as the relations of Deutsch, and of Maassen and Uffink-including 
the so-called entropic relations-we present a complete account of the uncertainty relation- 
ship between complementary aspects in terms of superspace geometry, an approach not 
hitherto employed. Two incompatible properties A =I, A,Ia)(aI and N =I,, N,, ln)(n/  
belong to a pair of complementary aspects defined by two orthonormal bases {la)} and 
{In)} in the Hilbert space X. If the state is I$), then P ( a )  = l(al$)I2 is the probability of 
obtainining the value A, in a measurement of A, and P(n)= l (nI@)l2 is the probability of 
obtaining the value N,  in a measurement of N. The two aspects are characterised, relative 
to I@), by the numbers (so-called purities): ag =I, P ( a ) 2  and at = P, P(n)', b o t h s  1. We 
give a complete characterisation of the uncertainty relationship between A and N (more 
precisely: between their aspects) in terms of the range of joint values of (a,, a<) for 
arbitrary initial states (pure as well as mixed). A theorem of Lenard is given an alternative 
proof, employing only elementary (superspace) geometry. The results depend on two 
angles, b,,, = minimal angle, and bM =maximal angle between the two aspects. Exact 
expressions for 4,,, and 4M are obtained in terms of the overlap matrix A = {A, , ,}  = {I( aln)i2}. 
As a corollary we find the uncertainty relation for a pure state I @ )  

a,+ at6 ( 1 +;) + (1 -$) cos 4m 

(where g =dim X), and a sharper one for mixed states. a,+ at = 2 is obtainable if and 
only ifthe intersection of the aspects holds a pure state. I f  +m = a / 2  (maximal incompatibil- 
ity), then a,+ ~ ( s  1 + l / g  is a special case of a stronger relation: a 'p )  = 2, which 
one obtains for g + 1 maximally incompatible aspects by means of a theorem of IvanoviC. 

1. Introduction 

To measure a pair of incompatible observables can be regarded as investigating two 
complementary aspects of a system. As is well known, the system must be prepared 
twice, in the same state, and each measurement must be performed on a separate 
replica. The outcomes agree (statistically) with two alternative predictions, made by 
quantum theory, on the basis of the original state. 

Let two such predictions be the expected statistical dispersions, Aq and Ap, for a 
pair of canonically conjugate properties, q and p. Then Aq and Ap are statements 
about the nature of the original state, as viewed from the alternative perspectives of 
the q- and p-aspects. The Heisenberg (1927) uncertainty relation 

AqAp i h  (1) 
can be said to characterise these aspects as such, insofar as it applies to arbitrary states. 
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1042 U Larsen 

Considerable progress has recently been made with respect to such a direct charac- 
terisation of aspects in general. We first recall some important results. Then we present 
the exact uncertainty relationship which is the subject of the present work. 

Let us explain this aim in more detail. Suppose X and Yare predictions characteris- 
ing alternative aspects, e.g. X = A q  and Y = Ap. An uncertainty relation is an inequality 
f ( X ,  Y )  3 0, where equality defines a curve in the X -  Y plane: f ( X ,  Y) = 0. In general 
this bound does not coincide with the boundary of the permissible region of ( X ,  Y )  
over the set of all states (or over a subset of states). Equation ( 1 )  represents a special 
case in which bound and boundary may coincide (e.g. minimal-uncertainty states of 
the harmonic oscillator). But generally an a priori commitment to a particularf prevents 
this. Hence, by aiming at the exact uncertainty relationship we shall understand that 
the boundary is to be identified, for specific X and Y (to be defined for our present 
project in section 1.3). Within this scope, defined by the chosen X and Y, the uncertainty 
relationship provides a complete characterisation of the relationship between different 
aspects. 

1 .I. The Robertson-Schrodinger inequality 

Until recently, the best available uncertainty relations for systems with finite- 
dimensional Hilbert spaces were those of Robertson (1929) and Schrodinger (1930). 
Let W be the state of a system, a positive definite, self-adjoint operator with trace 
Tr( W )  = 1,  and let the mean value functional be ( * ) Tr( W .  ). Then for two Hermitian 
operators, A and B, the variances (AA)’= @*)-(A)> and (AB)’=(B*)-(B)’ are 
bounded according to 

AAABaI(AB)-(A)(B)I SiI([A,  B]) i .  ( 2 )  
The first inequality is due to Schrodinger, and the second to Robertson. Although the 
historically subsequent uncertainty relation of Schrodinger is sharper, it does not 
appear to be generally available. The proof is short enough that we should pause to 
display it. 

Since (AB) = T r ( m A B m )  is an inner product for A m  and B m  as Hilbert- 
Schmidt operators (cf, for example, Dunford and Schwartz 1963), or a semi-inner 
product for bounded A and B (cf, for example, Conway 1985), the Cauchy- 
Bunyakowski-Schwarz inequality gives (A2) (B2)  2 I(AB)l2. Replacing A by A - (A)U, 
etc, gives the Schrodinger inequality. For Hermitian operators 

Deleting the anticommutator yields the Robertson inequality. So the Schrodinger 
inequality is sharper. 

Angular momentum is a typical example. Let P = ( G )  for the Pauli operators 
~ = ( ~ J ~ , C J , , , C J ~ ) .  Then AuxAu> 21iPz-PxPvl = { P ~ + P ~ P : } ” 2 z 1 P , 1 .  

Let the system’s Hilbert space W have dimension g = dim(W). If g = a3 the operators 
may be canonically conjugate: [A, B ]  = ih. Then (2) reduces to (1): AAAB a f h t .  

When g < cc there are no canonically conjugate operators (Wintner 1947, Wielandt 
1949). In this case either lower bound in (2)  is the mean value of some operator. 
Therefore they depend on the state W. As pointed out by Judge (1963) and Davidson 
(1969,  this represents a shortcoming of the uncertainty relations ( 2 )  for g <CO, with 

t Unbounded operators will not concern us here, and we refer elsewhere for a discussion of commutators 
and uncertainty relations in that case. All our  relations in the present work apply within the scope of 
bounded operators, and to generalise will require attention to domain problems, etc. 

l(AB)l’ = tI(W, B}) + ([An, W)I’ = alccAn, ~ l ) l ’ + t l ( [ ~ ,  m/’. 
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respect to their characterisation of the aspects of A and B. The following can happen: 
AA # 0 and A B  f 0, but ](AB) - (A)(B) l= 0. That is, A and B are incompatible, but 
(2) does not show it for those states W where the bound vanishes for an ‘irrelevant’ 
reason t. 

For instance, for the Pauli operators Au,Au,, = {( 1 - P : ) (  1 - P:)}”’,  and =( 1 - 
P ~ ) ” *  > 0 if P, = P, = 0 and P, < 1 (mixed state). But here the bound is { P s +  P;P:,}’” = 
0, and we are- not advised that ox and 0,” are incompatible. 

1.2. Some recent results 

Recent advances towards obtaining uncertainty relations which do not suffer from the 
above-mentioned shortcoming were initiated by Deutsch (1983). The idea in this 
development is to consider predictions ( X ,  Y )  other than the variances of two observ- 
ables. Since the first alternative to be investigated was a pair of entropies, these new 
relations are currently referred to as ‘entropic uncertainty relations’. 

Suppose A and B belong to different aspects of the system: A E d, and B E  a,$. 
In the state W the predicted outcomes of measuring either dzp, or dt are two sets of 
probabilities, { P ( a ) }  and { P ( n ) } ,  where P(a)=(P , )=(a lWla)  and P ( n ) = ( P , ) =  
(nl WI n ) .  If such complete measurements were actually carried out, the outcome would 
be systems in states§ 

w, = w,P, E d, w, = P ( a )  
OL 

wt = W n P n  E d, wn = P ( n ) .  
n 

We can define either the Shannon information entropies for the predictions while 
the state is W, or the Boltzmann-von Neumann entropy ( kB = 1) for either of the 
alternative states w, or wt. For complete measurements these will give 

H , = - c P ( a ) l n  OL P(a)=-Tr(w+,ln w,)=S(wg) (3) 

H p  = -c P (  n ) In P (  n ) = -Tr( w In we) = S( wt). (4) 
n 

Deutsch (1983) showed that 

where 

or c 2  = max Tr(P,P,). (6) c=max i(aln)l 
0 . n  e . n  

Proving a conjecture by Kraus (1987), Maassen and Uffink (1988) very recently 
sharpened ( 5 )  to 

(7)  H, + Ht 3 -2 In( c ) .  

t Of course, the bound in ( 2 )  may vanish for a relevant reason: M y  may be an eigenstate, of A say, so that 
AA = 0. But this must be a point on the (X, Y )  = ( A A ,  AB) boundary, and so it is not a shortcoming. 
$Here dsP,={AIA=Z.,A,Pa,, f f a = l o ) ( a l } ,  and dt={BIB=P,B, f f , , ,  P, ,=ln)(nl}  for a ‘Greek’basis {la)) 
and a ‘Latin’ basis {In)} in H. There are infinitely many such ‘aspects’ of even g = 2 systems (cf Larsen 1988). 
5 Complete measurements were discussed in detail in Larsen (1986b, 1988), where it was shown that the 
agreement w, = P ( a )  between a measured statistic { w e }  and predicted probabilities {P(o)} need not be 
postulated, but can be obtained as a theorem on very plausible measurement axioms. 
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This bound is independent of the initial state W, which in (7), like in (2), can be 
any pure or mixed state. Via the overlap c, the bound therefore properly displays the 
incompatibility between a pair of non-intersecting aspectst. The entropy is a general 
measure of the dispersion to be expected if a measurement of, say, A E d, were to be 
performed-as well as of the actual statistical dispersion present in the resulting state 
wg, after the measurement. The entropic measure applies to all member operators of 
d,, and is more informative than any single variance. 

Hall and Santhanam ( 1989) consider the incompatibility measure 

I ( & , ,  d?, W )  = max Tr( W(Pu v P,,)) (8) 
u,11 

relative to a given state W. Here P, v P, is the projector on the subspace of W spanned 
by I C Y )  and In). They show 

l i  

Z(d9, df,  W ) 2 -  - g l + c  
if [Pa,  P,,] f 0 for all CY, n. (9) 

Maassen and Uffink (1988) also consider a more general class of measures of 
dispersion. For r, s 2 -1 these measures are defined as 

I / r  

MA w,) = {; W P }  

M,( w,) = {; w:+s}  

(10) 

(11) 
11% 

and are essentially the class of p-norms for compact operators: IIA l i p  = {Tr(lA/p)}l’p, 
where /AI2 = A t A  (Dunford and Schwartz 1963). They find 

and s = - r / (2 r+  1) if r 2 0 .  

Equation (7) corresponds to the special case r = s = 0. For other values of ( r ,  s )  (12) 
may be a sharper bound than (7), but this requires that r and s have opposite signs$. 

These new bounds have many desirable features, most importantly the independence 
of W. But it has not been demonstrated that these bounds are the best possible, in 
the sense of being always attainable, or of c’ being a supremum in (12), and -2 In( c )  
an infimum in ( 7 ) .  However, if  dq and ~4~ are in the relation where I(ain)12 = l / g  for 
all CY, n (cf section 2), then -2 ln(c) = In(g), and (7) is optimal. For pure states W we 
may have W = w, E d9 and get wI = (l/g)U, giving H, = 0 and H, = In(g). Besides 
this special case no claim of attainability is made. 

A shortcoming (for instance pointed out by Landau and Pollak (1961), Lenard 
(1972) and Kantor (1986)) of such uncertainty relations-as distinct from the exhaustive 
‘uncertainty relationship’-is their commitment to a specific functional form. The 
relations (7) or (12) cannot be counted upon to coincide with the boundary of the 
allowed region of the pair of variables concerned. A complete display of the exact 
uncertainty relationship, which is the aim of the present investigation, requires that 
the boundary itself be located. 

t The bound -2 In(c) can only equal zero if  there is at least one i ( a ln ) i  = 1, and then it must, because in 
that case there is a state W = Pa = P,, = w+, = w( for which H, = H, = 0. The non-intersection relationship 
between aspects will be precisely defined in the following sections. 
i Incidentally, in terms of the p-norms, for p 3 1 the inequality (12) reads: li w ~ / / ~  ( C ~ ) ’ - ’ ~ ~ ~ ~ W ~ ~ ~ ~ ~ ,  where 
l / p + l / q = 2 .  



Superspace geometry 1045 

It is beyond the scope of the present work to discuss the uncertainty relationship 
pertaining to such continuous variables as the q and p which enter the Heisenberg 
relation ( 1 ) .  The corresponding operators do not belong to aspects (cf Larsen (1988) 
for a discussion), but may be arbitrarily well approximated by ?nes that do, as g +a. 
The wave-particle dual representations, $ ( q )  = (Si$) and $( p )  = ( p i $ ) ,  proper17 
belong to Fourier theory. For the associated probability densities, l4(q)l2 and I$(p)I , 
Hirschmann (1957) and Beckner ( 1975) provided the first ‘entropic uncertainty rela- 
tion’, which was used by Bialynicki-Birula and Mycielski (1975) to obtain inequalities 
which combine the variances of ( 1 )  with the information entropies for 14(q)12 and 
I$ (P)I* .  

1.3. Some new uncertainty relations 

In the present work we consider the Hilbert-Schmidt norm / /  . 1 1 2  as dispersion measure, 
for both final states w, and wt, as well as for the initial state Wt .  The best variables 
are the purities 

= Tr( W’) o s n  = n-  l / g S  1 - l / g  

where the first set refers to % I ,  and the second set to g2 (cf appendix for definitions). 
The superspace B2 and its hyperplane B2 of traceless operators have Euclidean 
geometry, due to the scalar product Tr(AiB). Thus l / g S n =  11 W/I:S 1 ,  and W is 
pure iff II = 1, or l=I = 1 - l /g .  Apart from the advantage of using the same dispersion 
measure for both aspects SI, and ,ay‘(, it is straightforward to extend the present results 

With this geometry in B2 and g 2 ,  finding the allowed region of the pair ( T ~ ,  T ~ ) ,  

or (iig, iic), reduces to showing that Lenard’s (1972) theorem on the numerical range 
of a pair of projectors applies. This is straightforward, and we give the result in section 
3.4. Also, because Lenard’s theorem relies on the ‘two-subspaces’ theorem of Halmos 
(1969) which may not be familar to all physicists, we provide an independent proof 
using only elementary geometry in 

For the purpose of comparing with earlier uncertainty relations, from the general 
result we may deduce the following relations§. Let & be the minimal angle between 
two aspects, d, and d!, for which an exact expression is given in section 3.1 .  Then11 

to g =a$. 

(section 3.5) .  

ii,+ ii(d R(  1 +cos c#lm) o s  c#lms T/2. (14) 

Equality is attainable, if one starts with states W of small enough purity R .  However, 
since the pure states do not in general cover the whole ‘unit’ sphere in B2 (cf Bloore 

+ This corresponds to the case r = s = 1 in which ( 1 2 )  does not apply. 
$ A s  pointed out by Maassen and Uffink (1988), this is not so for one of the measures used in ( 1 2 ) .  The 
reason is this: consider the nested classes a,, of p-compact operators (cf Dunford and Schwanz 1963). 
Here Bp E Z p  if p s p ’ .  One of the measures M ,  or M ,  in ( 1 2 )  corresponds to a norm 11 with p < 1. But 
a state, e.g. wB, is only required to be in B I ,  and so for g .+ cc I /  w911p + c13 is imminent. I f  that happens, 
(12)  cannot be extended. On the other hand, since s 33* no similar problem arises with the purities of (13). 
5 Since the latter are bounds, like ( 7 )  and (121, a variety of functional forms may be chosen. The ones we 
consider touch the boundary at the point where TT+, = T T ~ .  

I/ I f  there are states in common between dpp, and dt (apan  from WO = (l/g)U), then 4, = 0; if d, and If 
are in the special configuration mentioned in section 1.2,  then 4, = ?r/2 (maximal incompatibility). 



1046 U Larsen 

1976), equality may not be attainable for the outer inequality obtained from (14) setting 
li = 1 - l /g.  But with respect to displaying the incompatibility between the two aspects 
this is of no consequence, since I=l does not depend on d+, or dt. Equation (14) 
adequately exhibits the geometrical nature of the relationship between the two aspects, 
which we shall discuss in detail in section 2. 

Another uncertainty relation, not quite as sharp as (14), is of interest for comparison 
with (12). It is 

Either of these relations shows how (rg, rp) is confined away from the point (n, n), 
which can only be reached if c$m = 0. That is, if d, and sdt are not entirely incompatible. 

Naturally the overlap c’ does not enter these expressions-the angle & is a more 
precise characterisation. An exception is the case of total incompatibility, where 
c2 = l / g  and # J ~  = 7r/2. For instance, letting n =  1, (15) can be written as 7 ~ ~ ~ ~ s  

C ~ + ~ ( ~ - C * ) ~ ,  and (14) as r , + r t s 1 + c 2 .  
Apart from the exact expression for &,, in section 3.6 we show that a bound (not 

a sharp one) on ‘cos 4,’ can be obtained in terms of c2 ,  valid for I1 3 c 2 .  It is 
( C # J ~  = minimum angle for MY of fixed n) 

But in many cases the standard bounds obtainable from matrix theory may be better 
(cf section 3.3). 

A more extensive uncertainty relation is proved in section 2.4, which relates the 
purities of a set of g + 1 totally incompatible aspects. This relation, (25), is significant 
in connection with the precise characterisation of complementarity. 

2. Complementary aspects 

2.1. Measuring aspects 

Let W be a g-dimensional Hilbert space, and { la )  E Wl(alP) = 
With =Yq= {P, = ~ a ) ( a ~ ~ P u P p  = P,6,,) the corresponding aspect is the set 

an orthonormal basis. 

A,P, P, E -Y9, A, E C 

consisting of all operators which can be simultaneously diagonalised in terms of = Y 9 .  
The set of states is 

Y = { MY1 MY > 0, Tr( MY) = 1 }. (18) 

According to the Hilbert-Riesz theorem (cf Conway 1985, Dunford and Schwartz 1963, 
etc) any W E  Y belongs to an aspect: e.g. W = Z f = ,  WaPa, where =Y= {Pa }  defines 
some aspect sd. 

If aspects to which MY does not belong are to be investigated measurements must 
be performed, or considered theoretically. A measurement of an aspect, say d,, is a 
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transformation T,: 9’+ 9’. We require (for further details cf Larsen 1988) that, (i)  the 
final state belongs to d, 

w, = T,( W )  = 1 W Q P *  E d, (19) 
OL 

and (ii) T, leaves all pure states in 2, invariant: T,(P,) = P,, for all CY = 1, .  . . , g. 
These axioms suffice to show that any such T, projects orthogonally on d,, 

considering transformations as positive linear operators on the superspace 912 in which 
Y is embedded (cf appendix). Furthermore 

w,=(alWICY)=P(a) (20) 

where {P(a)} are the predicted probabilities for MY with respect to d,. 
For example, T, may be the von Neumann (1955) projection 

T,(*)=CP,*P,.  (21) 
Q 

Note that, with our axioms ( i )  and ( i i )  one need not postulate (21) in order to define 
measurements. It becomes a member of a class JU(d,) of transformations which all 
satisfy (19) and (20), and in which one also finds transformations with a physically 
meaningful causal structure. 

The preceding definitions apply to every aspect, such as our alternative dl. 

2.2. Complementary aspects are necessary 

Every transformation, such as T,, has an objective causal representation (Larsen 1986a, 
1988 and references therein). Thus 

T,( * ) = E: ( 2 2 )  
I 

where the set % = {E, E B(H)} is referred to as the ‘objective cause’ ofthe transformation. 
In (21) Ce = 2,, for example. 

Another consequence of axioms (i) and ( i i )  is that, for all members of A(&,) the 
measurement requires a cause Ce whose operators El all belong to d, itself. Physically 
this means that the operators in an aspect define the very operations needed to perform 
their own measurement. 

The incompatibility of different aspects, such as d, and dt, refers to the fact that 
the operations needed to measure d, or dt cannot be carried out simultaneously (not 
all operators in d, and dt commute). A full identification of an (unknown) initial 
state W requires that a set of replica systems are prepared, all in W, whereupon a set 
of different aspects can be measured. Each measurement provides a ‘projected image’, 
such as w, = T,( W )  when d, is measured?. 

Roughly speaking, the information content of a state W resides in g2 - 1 real 
numbers. A projected image on any aspect provides at most g - 1 real numbers 
E { w , J O c  w, 1, Z, w, = 1). So it requires at leas? 12 = g + 1 images projected on as 
many different aspects in order to fully identify W. 

f For example, in the binary system ( g = 2 )  one has W = f ( l +  @*6), where $ = ( a )  i s  the polarisation (in 
R3). Each direction of polarisation defines an aspect, e.g. o: = P, -P-  E dl defined by Yz  = { P + ,  P-} .  A 
measurement of d; is a projection on the : axis in R3:  w.. = T,( W )  = $ ( I +  @ : * a ) ,  where pz = (O,O, i . P ) .  
Thus to identify M y  it takes three projections of P on three linearly independent R3 directions, e.g. 
@ = (f-, P,, fz) for the aspects d,, d,, d;. This can be done by means of incompatible rotations about 
the x, y and z axes, generated by o,, o, ,  and er,, respectively (further details in Larsen 1988). 



1048 U Larsen 

Aspects are subspaces of W2 (cf appendix). Let the linear span of two aspects 
V { d ,  , d2} be the set of all operators which can be expressed as a linear combination 
of elements from d, and d 2 .  For I different aspects 

g + a  - 1 s dim(V{d, ,  . . . , d-}) s a(g - 1) + 1. (23) 

In order to span all of W2 we need g + 1 s I s g'- g + 1, since dim( 9,) = 8'. 

definition. 
The standard concept of complementarity (Bohr 1963) thus implies the following 

Dejnition (objective complementarity). (e,& = { d, 11 s p s I} is a set of complementary 
aspects provided? v { d p }  n W2 = W2, and provided there is no redundancy, i.e. provided 
every proper subset of %m& spans a proper subspace of 

This definition emphasises the completeness inherent in the original concept-that 
a full identification of an arbitrary (unknown) object state MY is possible by means of 
(complete) measurements of a set of complementary aspects. That this is so follows 
from the geometrical significance of the projections T, E A(&,), because %m& contains 
a basis for %'>. 

It should be remarked that it is the very existence of options to perform incompatible 
transformations (non-commuting operators) which demands that a full empirical 
identification of the state of an object must take place through complementary pic- 
tures-pictures obtained under the mutually exclusive conditions which causally define 
(through %) the corresponding measurement transformations. According to our 
definition, a set %m& is one which just suffices for this purpose. 

2.3. Perpendicular aspects 

There are many ways to compose %m& sets of complementary aspects. Evidently the 
questions with respect to aspects are more complicated than those pertaining to a 
quorum, about which more is known (cf appendix). We ask not just for a basis in 
B2, but for one which as far as possible consists of subsets of mutually compatible 
properties. Nevertheless, aspects are what is measured (cf Wootters 1986a). A quorum 
would generally involve more aspects than what is strictly necessary in order to form 
a %M.& set. 

Although the question of precisely which aspects constitute such a set Wwp must 
have been asked frequently in the past, the only exact results of which we are aware 
have been obtained quite recently (IvanoviC 1981, 1983). 

For the cases where g is a prime number IvanoviC (1981) has shown by explicit 
construction that there exist sets %M.& = {do ,  d,, . . . , d,} constituted of g + 1 aspects 
whose components (cf appendix) in g2 are mutually orthogonal: Tr(B"',@p'') = 0 for 
any such pair of aspects d, and d8,. ( p  # p ' )  in %mp. We refer to such aspects as 
perpendicular+. 

+ If g = cc then the aspects may contain operators outside a2, but since Y C  a2,  and since only a2 has 
Euclidean geometry, being the only Hilbert space among aP and 3 ( W ) ,  it is B2 that counts. 
$ Some authors refer to what we call perpendicular aspects as 'complementary' aspects (e.g. Schwinger 
1960b, Kraus 1987). However, i n  these works only pairs o f  aspects are considered, such as Schwinger's 
Fourier-dual 'wave-particle' aspects. A pair of perpendicular aspects always exists, but to incorporate the 
completeness property of complementarity we need a generalisation of IvanoviC's result to  non-prime g. It 
is not known if this is possible. If not, then resort must be taken to less optimal sets %&. 
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In this optimal situation it is straighforward to reconstruct the original state W out 
of the g +  1 states w',' = T,( W )  E d, which are the results of measuring %mg by 
means of transformations T, E A(&,) on g +  1 replicas of W. Restricted to g 2  these 
measurements { T,lp = 0, 1, . . . , g} are projectors on g + 1 orthogonal (g  - 1)- 
dimensional subspaces spanning g2 : g2 = @:,od,. 

Let m= W -  (l /g)n E 9 = Y n  a2. Then E t = o  T,( !&') = b@, since E:=o T,( e )  = unit 
operator on g 2 .  Therefore 

(IvanoviC 1981). Clearly a similar analysis of the data obtained from measurements 
of less perfectly arranged complementary aspects would also permit to identify W. 

It remains an open question if sets (em& composed exclusively of  mutually perpen- 
dicular aspects exist when g is not prime. Some later results of IvanoviC (1983) pertain 
to sets of aspects whose components in a2 are not orthogonal, but linearly indepen- 
dent?. For g = cc the discussion in section 2.2 establishes the existence of (e,& sets-not 
much more seems to be known at present. Of course, if taking g+cc  in the present 
g < 00 discussion implies that every %m& set becomes infinite, then a full identification 
of an arbitrary W becomes unfeasible, by empirical means. Hence the traditional 
emphasis on the investigation of suitably prepared and reproducible initial states-uuis- 
u-vis spontaneously arising ones. In our opinion, such practical difficulties should not 
be taken to affect the physical reality which is associated with the state of a system 
(cf section 4). 

2.4. A master uncertainty relation 

First, suppose W E  SI,, where d,  is the last of the g + 1 perpendicular aspects listed 
in (em& ={do, a!,, . . . , d,}. Then for all p = 0,. . . , g - 1: T,( W) = T,( W -  (l/g)li) = 
0, i.e. MY',') = ( l / g ) l  = WO. The result of measuring any aspect which is perpendicular 
to the aspect of the initial state is the completely mixed state WO. The data obtained, 
i.e. { w x ' l p  = 0,. . . , g } ,  agree with the predicted probabilities {P"' ) (n , ) } .  So obtaining 
WO implies that all properties in aspects perpendicular to ( SI,) are totally indeterminate, 
when WE&,, whether W is pure or not. The uncertainties predicted are maximal, 
and a measurement of any aspect perpendicular to d,  provides no information at all 
about the values of the properties in it$. 

More generally, when W does not belong to any of the aspects in 'e,&, let 
II = Tr( W 2 )  and &')= Tr( w" ' )~ )  be purities. Since LW'= w'+'- (l/g)D belong to 
orthogonal subspaces d, in g2, Pythagoras' theorem on m = C ; = ,  d") gives O <  
E:=, Tr( L V ' ~ * ) * )  = Tr( m2) = l=I = I7 - ( l / g )  5 1 - ( l / g ) .  Thus 

The upper bound is attained when W is pure, and the lower bound when W =  WO. 
In particular, for a pair of perpendicular aspects d,, dpI E (em& we have (strictly 

t Linear independence is related to projectors T in 'generic position'. This will be discussed in section 3. 
$ Such a measurement, of course, does provide information about My in the sense of section 1. But all 
values of physical properties come out in equal proportions, so the measurement says nothing about them. 



1050 U Larsen 

speaking, only for prime g, so far) 7rP+ 7ry 6 n +  l/g,  or in terms of a2 norms 

77,+*,6ii (dpg1& 1. (26) 

For example, for g = 2 with (e,C = { d,, d,, dz} we obtain the uncertainty relation 

(27) 

Although the Euclidean geometry make these relations straightforward to derive, they 
are in fact stronger statements than the traditional relations, such as (2).  

This corresponds to (14) when 4,,, = 7r/2. 

for variances (ACT: = 2( 1 - T ' ~ ) ) ,  etc) 

2 s  ACT:+ ACT:,+ A(+: = 3 - P ' S  3. 

3. The exact uncertainty relationship 

3.1. The angle between two aspects 

It is convenient to use ordinary vector notation for the a2 geometry: b%'= W, W, = x, 
and @! = y .  Thus the scalar product is 

(28) x - y = Tr( W8 W ,  ) 

and the ( g 2 -  1)-dimensional vectors have lengths 

Also, the angle 4 between W ,  and WP is 

A measurement of d, projects orthogonally on d,: w, = T,( MV). In G2 on dg (cf 
appendix): x = T,( W ) .  Likewise: y = T,( W ) .  The distance from any W to d, is 
shortest between W and the projected image x (true in all Hilbert spaces). 

Any two aspects d, and d, intersect at the origin of gz. If the two aspects are 
linearly independent (IvanoviC: 1983) the origin 0 is the only point of intersection. In 
that case the corresponding projectors, T, and T,, restricted to az, are said to be in 
generic position (Halmos 1969). If  d, and d, intersect elsewhere than in 0, then a 
subset of states W exists, for which T,( W )  = TP( W )  = W. Hence there is no uncertainty 
relation between x and y ,  as all that can be said is O s  4 S 7r/2. On the other hand, 
if d, and d, are perpendicular (cf appendix), then 4 = 7r/2 for all x E d, and y E d,. 

In  order to define the minimal angle, d,,,, and the maximal angle, 4M, between a 
given pair of aspects, consider the unit spheres in d, and dt, which we assume are 
linearly independent. These spheres do not intersect. The shortest distance between 
them is the length of one or more vectors lying in a plane through 0 which intersects 
both spheres at right angles. 

To see this, assume it is not the case. Project perpendicularly from one unit-sphere 
point onto the other's aspect. This will reach a point perpendicularly opposite, and 
at the shortest distance. The angle from 0 to these two points is the smallest angle 
between the initial unit vector and any vector in the aspect projected upon. This angle 
is smaller than the angle between the two initial unit vectors. Thus we have a 
contradiction. 
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The unit ball in d,, say, maps one-to-one onto the simplex 9, (Brown and Wehrl 
1972). For every possible angle between pairs of vectors in d, and dp there are states, 
members of 9, and g,, respectively, which form the same angle, but possibly not pure 
states. Furthermore, there are states W in the plane which contains &,, for which the 
projections T, and T! both take place within said plane, so that 4, is the angle between 
x and y. Consequently 

cos’ 4,,, = maximal eigenvalue of T,Teld, (31) 

the restriction of the operator T,Tt to dg. For the associated eigenvector, call it x,, 
we get T,T,(x,,,) = T,(cos q5,,,ym) = cos‘ q5,xmi. This agrees with Lenard’s (1972) deduc- 
tion from Halmos’ (1969) two-subspaces theorem, the two subspaces in question being 
d, and de. 

The same plane which contains 4, also contains 4h, the largest angle between, 
say, d, and 8; = ai ,Od,  (the orthocomplement of dt in ai,). Were this not the 
case, then the plane which did contain a larger dL would have a complement angle 
q5 > q5,,, , while dL + 4 = 5r/2 implies 4 = 5r/2 - q5 < 5r/2 - 4m = 4h, a contradiction. 

Inverting the roles of 8, and d;, this shows that the largest angle, 4M, between 
d, and 8, equals ~ / 2 -  4$, where 4; is the smallest angle between d, and 2;. Thus 

(32) 

where T j  is the orthogonal projector on 8:. This also agrees with the findings of 
Lenard (1972). The following are new results. 

In order to find explicit expressions for q5,,, and 4M we employ a matrix representa- 
tion on d, (not de, which is inconvenient). An orthonormal basis for LZZ, is 2, = {P,}. 
To represent the restrictions to d, we need the projector Po on the B2 ‘unit-subspace’ 
V(1) = B3,0 2&. Let P = 1 - Po be the projector on We have Po(.  ) = ( l /g)Tr(  .)U. 
Since our transformations preserve the trace and 1, a, and V(1) are reducing subspaces 
for T,, T,, T,Tr, etcS. Let T be such a transformation. Then 

sin’ +M = cos2 4: = maximal eigenvalue of r, r;ld, 

- - -  
T ~ P T P = T ~ = T - P o T P o = T - T P o = T - P o  (33) 

where the last identity is a consequence of TPo = Po = POT. The matrix representation 
of T l d ,  is therefore obtained from 

Tap=Tr(PmT(Pp))  =Tr(P,T(P~))-Tr(P,P,(P~))= Tap - l / g  (34) 

where the subtraction serves to remove the eigenvalue 1 associated with T (  WO) = WO 
(a Perron-Frobenius eigenvalue). 

Now T =  T,Tt gives Tmp =I;:=, Aa,,.Ap,,, where A,,  = I(aln)i’ defines the matrix 
(gxg )  

A = { A m n }  . L n  = I(.ln)12. (35) 
Thus T = AAT, and from (34) 
Both T and A are doubly stochastic. One can also write 

= T - J, where J is the matrix representative of Po. 

(36) = &A’ 
if one defines & according to (34). 

t Defining y, so that Y ,  = x, in length. 
$For instance: Let A E ~ ~ ,  and Tr(A)/g-a .  Then P,(A)=aU, TPo(A)=  T(aD), and P,T(A)=  
(I/g)n W T ( A n ) )  = (I/gjTI Tr(A) = an. All our transformations preserve the trace, and the measurements 
also preserve the unit operator: T(1j = 8.  
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We d o  not know that is a normal matrix. Hence the eigenvalues of T, A (  F), 
equal the (singular values)2, p(i?)’,  of A. If A is normal, then A(T)= \h (A) I* .  So 
from (31) 

cos‘ 4, = max A ( T )  and  cos 4, = maxlA(x)l (37) 

if A is normal. 

which implies that the minimal angle between d, and 
member of both. 

T, - 
or 

Note that the restriction to sg gets rid of the Perron-Frobenius eigenvalue of T, 
is always 0 because 1 is a 

p - T( = 1 - T‘ by (33). Then T, T; ld ,  = pT,( 1 - T‘) p = 
= T,- T. Since T, is the unit operator on d,, from (32) sin’ 4 M  = max A (  1 - T ) ,  

To find 4M we need T ;  

cos’ 4b, = min A ( T )  and COS $M = minlA(A)l (38) 

if A is normal. 

3.2. An example 

The g = 2  case is worth exhibiting, although this value of g is too small to be 
representative. Let df be based on { I + ) ,  I - ) }  and  d( on {It), Ii)}. g2 is three 
dimensional, and  d ,  and dpp( are one-dimensional subspaces. Thus 4”, = 4M, which 
is of course not normally the case. Let c’= l (+lT)/2 be the maximal overlap. Both A 
and A are real/symmetric, hence normal: 

Thus A(-4)=1,  2 2 - 1 ,  and  A(A)=2c2-1 ,  0. So 

cos 4, = cos 4 M  = 2c‘ - 1. 

This is also the angle in the R3 representation of a’. Let M Y =  iT)(tl be a pure state of 
df. Projecting its unit polarisation vector on the d, direction we get a polarisation 
of length w, - w- = (+I Wl+) - ( - 1  MY/ -) = c2 - (1 - c’) = cos 4m . 

3.3. Comparing aspects 

As discussed in section 2.3, for perpendicular aspects d,,, = 4h, = ~ 1 2 .  Such aspects 
are-so to speak-as different as aspects can get; A = J has g - 1 eigenvalues equal 
to zero, one equal to 1. Thus T = 0. 

For 4M = a 1 2  it suffices that one p, is orthogonal to one p,,. Since this condition 
may not be necessary, we might ask what is required for having 4M < n/2.  We shall 
obtain a sufficient condition. Since det( T )  = ldet(A)12, thus, if det(A) f 0, then &, < 
a / 2 .  

Arrange the ‘Greek’ and  ‘Latin’ index sets so that the maximal overlaps between 
{ la)}  and { in ) }  (closest P, and P,,) occur along the diagonal of A. Let the arrangement 
be 

(a, . . ., y, ‘ ‘ . 9 g )  

( a , .  . . , n , .  . . , g). 
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Then A,, is a typical diagonal element. By the LCvy-Desplangues theorem (cf Marcus 
and Minc 1964), det(A) f 0 if for all a :  A,, > E,,, A,, (or if A,, > EU#, A,,, for all 
a ) .  Since A is doubly stochastic we require h,, > 1 -Ae , ,  or 

A,, > i for all a (all diagonal elements of A )  (39) 

3 4 M  T / 2 .  

For the minimal angle &,, standard matrix inequalities (Marcus and Minc 1964) 
give: 

niax 1 TaP 1 s cos’ 4, s max I T,, I. 

cz  - 1 Z S C O S  + m s 2 c Z - 1 *  

(40) 
4 “ P  

When g = 2 (section 3.2), from (39): +M < 7 r / 2  if C* > i. From (40), but applied to i?, 

3.4. The exact range of (rp, ri) 

The measurement transformations T, and Ti are orthogonal projectors: T;= T,, etc. 
On g2 the purities can be expressed in the form 

ii, = Tr( Q&;) = Tr( T,( m)’) = Tr( mT,( m)) = fi Tr( ATv( A ) )  (41 1 
where iiAl12= 1 ,  and A E  gj,-unit sphere$. Likewise for ii,. Thus ii,/fi is in the 
numerical range of T, (restricted to a2), the G2 expectation values of the operator T, 
relative to the normalised vectors A. 

The joint numerical range of T, and T,, defined as the ranges obtained with the 
same 4, was found by Lenard (1972). Hence the range of the pair (e,, iip) is the 
numerical range scaled by fi. It is the convex hull of two ellipses, given by dm and 
+ M ,  and the origin ( e,, 5,) = (0, 0), as illustrated in figure 1 .  With + = 4m or 4M the 
ellipses are (0 s 0 c 2 ~ )  

(42) 

The semi-major/minor axes are fi( l / a )  cos 4 and fi( l /&) sin 4. These ellipses are 
confined within a square of side R, and centred on (iRlffi). Pieces of this square 
connect the tangent points, for instance the line from (fi, rIcos2 &,) to (fi, ficos* &,), 
as shown in figure 1 .  

If we choose to map the region (E,,  5,) exclusively by means of a2 operators m 
which represent states W E  9, then A does not cover the whole B2 unit sphere unless 
fi is sufficiently small-small enough for 9 to include a sphere of radius fi”*. In 
particular, if we assert that (ii,, f,) is confined to the largest region, fi = 1 - l/g, 
corresponding to the pure states of 9, then not all of the boundary points are accessible§. 

ii, = in( 1 +COS( e +  d) )  +[= in( 1 + COS( e - 4 ) ) .  

t But using .? when it  is normal is sharper. 
$ For the present purposes we need consider only the subspace of consisting of the self-adjoint operators. 
The third identity in (41) is due to the duality: T r ( A n ’ T ( B ) ) = T r ( T * ( ~ j t B ) ,  and T,= T:. From (22) ,  if 
V ={E, }  is the cause defining T, then V. = { E ; }  defines T*. 
I A sphere in g2 has dimension g2 - 2 .  The boundary of the convex set 9 also has this dimension, but is 
not a sphere (Bloore 1976). The pure states form a 2(g- 1 j dimensional subset of the boundary of 9: 
2(g- 1) is the number of real coefficients in the expansion of an arbitrary /+)=Xu c , / a ) ,  (+I$)= 1. The 
case g = 2  is an exception. Also, of course, the smallest angle 4, does not in general connect the pure 
states of 8, and 3,. 
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Figure 1. Accessible region for the values of the two purities (eig, et) associated with a 
pair of aspects forming the minimal angle &,,, and the maximal angle &,, . The purity of 
the measured state is fr < 1 - l /g .  Curved parts of the boundary are segments of ellipses 
given by (42). Unless the aspects have states in common 6 ,  > 0, and the allowed region 
excludes the region near (fr, fr). 

However, this is of little significance with respect to the relationship between the 
aspects sdg and dr. We can decide to project operators from the whole (unit) sphere 
of a2, be they states or not. The relationship remains controlled by the two angles 
4 m  and 4 ~ .  

The uncertainty relations (14) and (15) are obtained by setting 0 = 0, 4 = &, in 
(42). The straight line bound of (14) coincides with the exact boundary for 
perpendicular aspects, &, = ~ / 2 :  

.rr,+iipsR (&,l&) 

without the restriction to prime g of ( 2 6 ) .  

3.5. A geometrical proof 

We use the vector notation defined in section 3.1 .  The vectors W, x, and y span a 
three-dimensional subspace of a2, and x and y span a two-dimensional subspace with 
the geometry of figure 2. Here A is the diameter through 0 of the circumscribed circle 
of the triangle (0, x, y ) .  The angle, in this plane, between x and y is given by (30). 

x is the perpendicular projection of both 
A and W. So A and W both point to a plane perpendicular to x, through its tip. 
Likewise for y .  Thus A and W belong to the intersection of these planes, which is the 
line through the tips of A and W, perpendicular on the ( x , y )  plane. Consequently, 
for the lengths 

In this three-dimensional subspace of 

A s  w. (43) 
Elementary plane geometry gives 

/x  - yJ  = A sin 4. (44) 
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Figure 2. Geometry in the plane of x and y .  Dotted line construction on chord (broken 
line) gives (44) by standard arguments. 

For later use we note that 

X ~ = A ’ C O S L J ,  C O S W ~ = ~ A ’ ( C O S  ~ # J + c o s ( L J ~ - L J ~ ) ) S ~ A ~ ( C O S  4+1). (45) 

From (44) 

x 2  + y’ = A’ sin’ 4 + 2xy cos 4 
which for fixed A and 4 defines an ellipse in the ( x ,  y )  plane o f  joint values for x and 
y .  It is 

(46) 

or 

It is tangent to the bound y = A at x = A cos 9, and to x = A at y = A cos 4. 
Consider the subset of vectors W which gives rise to the same angle 4. For these, 

( x ,  y )  is on ellipses contained within that with A = W. Now allow $J to vary, keeping 
W fixed (states of given purity). The outer ellipses have the straight segments 

y =  w w c o s ~ M ~ x s  wcOs4,  

x =  w w c o s 4 M s y s  w c o s 4 ,  

as envelope. The rest of the boundary is formed by segments of the 4M and &, ellipses, 
and the x and y axes. It is straightforward to show that this region is the same as the 
joint numerical range obtained by Lenard (1972) .  

3.6. Fixed purity 

In order for 4, to be certainly accessible, what is the largest purity fi of the initial 
state? A a2-sphere must be inscribable in 9. For this it is necessary and sufficient 
that a sphere can be inscribed in the simplex of an arbitrary aspect, d, say. Referring 
to figure 3 ( b )  in the appendix, the point closest to 0 on a face of 9, is 
( g  - I)-’ Z:;’, pa = - ( g  - l ) - ’  pg. The purity here is ( g  - 1)-’ ( 1  - l / g )  = l / g ( g  - 1). 
Thus if fi > l / g ( g  - 1) the minimal (and maximal) angle may not be accessible. 
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The bound (16) is what can at present be said about the smallest angle, 4; 5 4,,, , 

From (45) and (30) we have 
which can occur with fixed initial R, pertaining to states W E  9. 

Here the second inequality is due  to x . y = Tr( aquWt) being a bilinear functional over 
the two simplexes 9, and 9(. It attains its maximum for a pair of vertices, i.e. 

1 
x . y s max Tr( POP, ) = c’ - - 

0.n g 
(Marcus and  Minc 1964). From (47) 

This bound is reached (if  possible) at 8 = 0 in (46) for A2 = l=f if fl cos’ ( 4 / 2 )  equals 
the upper bound in (48): 

As the actual 4 ; ~  d, this gives (16). It is a non-trivial bound if fi> c’ - ( l /g ) .  
Expression (48) is an  uncertainty relation, but not as sharp in itself as what we get 
using 4&. 

3.7. A wider perspective 

The difficulties in attaining the boundary for (ii,, et) are entirely due  to viewing the 
aspects through the subset of a2 which consists of the states m in 9. There is another 
viewpoint. Let T = T* = T 2  be any measurement transformation, such as T, or 7’‘. 
After the measurement the state becomes U& = T (  m). If A is an  arbitrary property, 
A = A + ( l / g )  Tr (A) l  shows that the significant part A lies in whereas the second 
term is trivial. The mean value becomes 

1 
g 

( A )  = Tr( A w) = Tr( A a )  +- Tr( A ) 

and we may restrict the attention to the first term and  a2. Here we have a well known 
duality (cf (21) and (22)) 

Tr(Ar&) = T r ( A T (  m ) ) = T r ( T ( d ) T (  m) )=Tr (T(A)m) .  
Either way, the mean value is determined by the ‘measured property’ 

One can therefore choose to read all of the foregoing results as pertaining to arbitrary 
operators in %’2 (and g 2 ) .  In particular, one can read l? as \\fill:, and ii, as \\&,\l:, 
where Q,= T,(,d), etc. The boundary is attainable, and  in a sense we have a more 
direct statement about the aspects d9 and dt, independently of any initial state. 

The allowed region for (x, y )  in section 3.5 is directly the joint numerical range of 
the two B’,-norms ((ldgll l ,  l l Q f l 1 2 ) ,  controlled by &, and &,. From (46) we could 
derive yet another uncertainty relation 

Q = T (  A ) .  

d, = T,(A) and = Te( f i ) .  (49) 
4 m  I I @, I I 2 + II dt I/ 2 6 2 I I A I I 2 cos 1 
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The reduction in magnitude of the g2-norm after measurements is a measure of the 
'trivialisation' of the property A. As shown in section 2.4, if d,ldp are any two 
perpendicular aspects, then Tr( a,) = T,( a,) = 0. Thus the operator T,T, = T,T, projects 
on V{l}t, and trivialises every property: 

1 

g 
T,T,(A) = TpT,(A) =-Tr (A)1  (&&do. 

T,T,( W )  = T,T,( W )  = WO ( d,-L 1. 
In particular, for any W E  Y 

4. Discussion 

It seems appropriate to conclude with some remarks of a more general nature. 
Aspects are defined with respect to the classical logic inherent in the projector set: 

3, = {Pa }  defines d,. Our measurement axioms were designed with the intention of 
defining the measurement transformation T, E A(&',) entirely with respect to this 
classical logic$. In that way one secures the unambiguous communicability of the 
outcome, the statistic { w,} .  The causal structure turns out to be defined also in classical 
terms-by which we mean that the set % = {c}, the objective cause of T (  ) = Xj 4 - E;, 
is a contemporary definition of the Aristotelian 'efficient cause' in an operational 
context. For a measurement T, one finds a cause %'g~ d, expressible exclusively in 
terms of the operators which TB is supposed to measure (Larsen 1988). 

We have demonstrated that, with this natural extension of the standard concept of 
measurement a full identification of a state W necessarily requires the measurements 
of several different aspects. Sets %WZ& of complementary aspects, such as Ivanovic's 
perpendicular aspects, always exist and suffice. Therefore a given MV is physically 
equivalent with the set of statistics which are the actual outcomes of measurements of 
%"&-as well as equivalent with the set of probabilities predicted for W theoretically. 
Yet, in no way do these conditions of operational experimentation detract from the physical 
reality which can be associated with the object state W. Each W belongs to at least one 
aspect. A pure state, PIL say, belongs to all the different aspects whose 5! contain PIL 
(i.e. aspects whose 2& parts intersect along pb): one can choose an arbitrary basis for 
the part of W which is orthogonal to I$), and these choices correspond to different 
aspects. 

The aspects of MI/ may not be known. Even if known, an experimenter may find 
it beyond his means to perform a reproducing measurement of any of them. But this 
is not a matter of principle. Rather, it is a situation one must expect to encounter- 
especially in dealing with unique, spontaneously arising states. In principle, any of 
the aspects of MV could be measured-themselves providing the requisite operational 
cause %. Doing so would allow the experimenter to confirm that W did indeed belong 
to the aspect investigated, without altering the state W. We therefore assert that, a 
complete respresentation of the objective reality associated with W is to be found in 
and among the aspect(s) to which W belongs. 

If one considers more general transformations than measurements, to draw causes 
from the aspects of a state W will produce transformations which leave W invariant. 

+That is, T,T,= T P T g = P O = ( l / g ) T r ( . ) l  
$ The redundancy is provisional. 
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This is related to the contemporary viewpoint that physical reality is linked to symmetry. 
More specifically, when invariances imply conservation laws physical reality can be 
associated with definite quantitative values of certain sets of properties. For instance, 
the index $I E {CY} of a definite pure state Pi E d, is synonymous with a definite set of 
values of a so-called complete set of mutually commuting operators belonging to d,. 

Let us just remark upon one side of this standard interpretation. It might be asked 
how one distinguishes operationally between the different members of { a } ,  since as 
far as d, is concerned all pure states P, E Y, have the same invariances. However, 
each P, belongs to other aspects than &,-and these different aspects are not all the 
same for any pair of P, # Pp. Thus one can, in principle at least, distinguish a from 
p by certain invariances of P, and Po which do  not coincide. The causes defining 
these ’secondary’ invariance transformations come from aspects other than d,. 
However exotic they may appear, in principle they suffice for the operational distinction 
between the members of 9,. Referring to figure 3 we would say that this way of 
distinguishing, between p, and Po say, is geometrically self-evidentt. 

Elsewhere we have discussed the probabilistic nature of the theoretical predictions 
made with a given W (Larsen 1988). This probabilistic/statistical theme emerges 
whenever it is considered to measure aspects to which W does not belong. Its precise 
characterisation was the subject of the present investigation. We argued, in connection 
with the objective causality based on the existence of an operational cause Y2 for any 
transformation, that the statistical dispersion in the outcome {w,}, say, can be ascribed 
to the alterations of W which ensue from measuring &,, if d, is foreign to MV. These 
causal influences from a future measurement environment are foreseen in the predicted 
probabilities { P ( a ) } ,  while the state remains W. That the consequences of such 
hypothetical future events include statistical dispersion in the data one obtains can be 
seen as the price one pays for acquiring an image of W, projected on a simple and 
intelligible aspect d, E %m&. 

We do not find that these experimental opportunities to measure sets %WZ& of 
complementary aspects of our choice need reflect on the concrete reality of the state 
W at hand initially. It is immaterial that the measurements of the members of %“p 
must needs be mutually exclusive, operationally. And it is immaterial that there may 
be statistical dispersion in the data, because there are external influences on the way 
from W to w,, as described objectively by the cause %’, defining T, E A ( d,). Perhaps 
one may see these remarks as a way to reconcile objective complementary and objective 
reality in a contemporary operational context. 

Appendix. Superspace geometry 

The set of states Y is a convex subset of the Hilbert space B2 (=Hilbert-Schmidt 
operators on W) with inner product Tr(A ‘S).  Every element of B2, hence every state 
W E  Y, can be expressed as a (countable) linear combination of operators belonging 
to a basis for B2. An orthonormal basis for B2 may consist of self-adjoint operators 
which are compact and normal, hence diagonalisable (Conway 1985). Therefore each 
element of a self-adjoint basis belongs to an aspect, but not all to the same aspect. 

t Of course, in practical work i t  is much more convenient to investigate how a given state is changed in 
transformations which are not invariances. But this is less relevant to the question o f  physical reality in the 
strict sense. 
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The intersection, d n B2, of an aspect d with B2 is subspace of W 2 ,  with its 
defining projector set 2 as one orthonormal, self-adjoint basis. If dim(W) = g <CO, 

then dim(B2) = g 2  and dim(& n B2) = g. For simplicity we refer to d n  W2 as 'the 
aspect d' in the geometrical context, although not all of d is in 93' if g=oc (in 
particular, U is not in W 2  when g =CO,  although U E d). 

The linear subspace V{l} is in s2 when g < CO (as we assume henceforth), and is 
orthogonal to the stack of ( g 2  - 1)-dimensional hyperplanes defined by Tr(A) = 
constant. Let 

be the traceless operator hyperplane. Each aspect intersects B2 in a ( g  - 1)-dimensional 
subspace (because V{U} belongs to every aspect: 1 = 1, P, E d,, etc). If A E d, then 
A E d = xf n B 2 .  

Consider a definite aspect d,. Then Y intersects d, in a convex polyhedron with 
the pure states 2,= {Po}  at the vertices (i.e. w,=-1, w,P,, w, 2 0 ,  1, w, = 1 for 
w, E d,). In g 2  the intersection of d, with 9, called 9, = 2, n 9, is the corresponding 
( g  - 1)-dimensional simplex with vertices {p,}, of which g - 1 are linearly independent. 
With lengths given by the B2-norm 1 1  1 1 2 ,  these configurations are indicated in figure 3. 

Let { A ( k ' j k  = 1, . . . , g' - 1) be a self-adjoint orhonormal basis for g2, known as a 
quorumt  (Band and Park 1970, 1971, Park and Band 1971). Thus W =  
( l / g ) l  +E&:-,' (A'k ' )d 'k ' ,  where (4")) = Tr( WA'k)).+. 

Other examples of basis sets for g2 when g <CO are given in Fano (1957) and 
Schwinger (1960a, b). For g =CO the geometry is related to coherent states (Klauder 
and Sudarshan 1968, Cahill and Glauber 1969), and the Wigner/ Weyl representation 
(Schwinger 1960b, Band and Park 1979, Royer 1985, Fano 1957). Analogous rep- 
resentations for g <CO are given by Stratonovich (1957), Radcliffe (1971) and Wootters 
(1986b, 1987). 

In order to set up mathematical representations we need only one aspect, say d,, 
The wavefunction (a]$) = $(a) represents the pure state I$), or P, = I$)($I. But if 
one measures d, one acquires merely the information held in w, = P ( c Y )  = I ~ ( c Y ) ~ * .  
Likewise the density matrix W,,! = ( C Y ]  Wla') represents the mixed state W, whereas a 
measurement of d, yields merely w, = P ( a )  = We,. 

In the context where the Wigner function occurs one uses two aspects in order to 
create a representation of W 2 ,  say d, and df. Suppose that for all CY,  n : ( a ( n ) # O .  
Then {P,Pn} is an orthogonal basis in W2 (not a self-adjoint one, and not normalised). 
So W (  a, n )  = Tr( WP,P,) represents W in terms of a function of two variables, a and 
n, which suffices because g x g = g 2  = dim( B2), essentially. With another choice of 
basis the Wigner function can likewise be a function of two real (phasespace) variables 
pertaining to two different aspects (Wootters 1986b, 1987). 

But W ( a ,  n) is not the outcome of any measurement, just as $(a) is not, and 
neither is positive definite (or real valued). To detect all the information held in either 
14) or W, as well as in any representation like $(a) or W ( a ,  n), one must measure 
many more different aspects than those needed to create the representation. 

-? More generally, to have a quorum we need merely a linearly independent set from a2, 
$In g = 2 : 4 . ,  is three dimensional; {f i ("}={(i /&!)~, ,  ( I / ~ ) Q ! ,  (1/&!)~,}, W=$(n+p .6 ) ,  d,= 
v{(1/a)u3 ( 1 / V 2 ) Q r } ,  and 2, = v { ( l / d b ~ ~ ]  
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( 0 )  
d 

0 

d 

Figure 3. Subspaces of a2 and s2 associated with a given aspect ( a )  for g = 2 ,  and ( b )  
for g = 3. All states belonging to the aspect d are in the polyhedra with the projectors of 
sl at the vertices, while 2 = d n contains the simplexes corresponding to the face 
which contains W O .  All lengths (and angles) are defined by the norm 11 . l 1 2  given by the 
inner product Tr( ,' ). The geometry is Euclidean. Note that, while the P are orthogonal, 
the P are not. There is g-fold symmetry about the 8-axis. 
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